Green Computing with a Server Based Desktop Workstation

Human hand holding tablet pc with green tree on it

A lot of people whether friends or family wonder what kind of computer I have and usually say something along the lines of “Areeb must have a supercomputer as a PC”.  Most people are surprised when it couldn’t be further from the truth, and even more, I have no need for a more powerful computer.

A few months ago I decided to upgrade from a self-built AMD Phenom Quad Core CPU with 8GB of RAM and RAID 1 x 1TB hard drives, not because I needed the CPU power, but because I wanted more RAM and grew tired of maintaining so many physical computers in my personal space.

Prior to this I used to have a separate server for all of my testing, VPS and another for filebackups and media.  But it really was quite the waste to use so much extra power when those other systems sat mainly idle.

My solution was to make a hybrid, Desktop workstation on my own (I always prefer to build my own systems).  I must admit I didn’t have an exact plan and it was more of a work in progress when I first started.

My Home Made Workstation

I have used servers based on the AMD Opteron 2400 series and loved them because of their low wattage and high cores.  Almost any of them would give me more power than I had before (which I didn’t need).

I settled on a brand new Coolermaster Case which supported dual power supplies, and more importantly EATX server motherboards.

AMD Opteron Tyan/HP Server Based Motherboard:

I’ve always been a fan of AMD so I couldn’t resist when I came across this model.

HP XW9400 but is really a rebranded Tyan S2915E (I love Tyan products because I find they are incredibly stable and long-lasting, no Asus Desktop product can compare in my opinion).

What’s to love about the Tyan S2915E/XW9400 Motherboard?

 

AreebXW9400build

  • Dual CPU Sockets (I installed dual 6-core AMD 2419EE to keep the power low, at just 45W each for a total of 12 cores)
  • 8 RAM sockets (4 per CPU with support for up to 64GB DDR2 ECC RAM)
  • SAS/SATA Controller (LSI 1068E) with 8 ports
  • SATA Controller (MCP55) with 6 ports.
  • Dual NVIDIA 1gbit NICs
  • Dual PCI-E x16 Graphics Slots
  • PCI-X (2) PCI-X 64-bit 133/100MHz slots
    PCI (1) PCI 32-bit slot
  • Onboard Audio

Can be flashed with Tyan firmware and in case of a bad flash it has a standard ROM chip that can be replaced and/or flashed even from Linux (using Flashrom).

The Build

Since I bought a brand new HP XW9400 motherboard there were some challenges.  First of all it came with standoffs meant for the HP XW9400 case but are completely useless for a standard EATX case.  To make it worse they are TORX screws with a security bit in the middle.  Fortunately it is fairly easy to break the security bits off using a flat head screw driver.

Power Supply is not a standard ATX, I bought one used from the XW8400 (interestingly enough the ones branded as XW9400 are missing the memory power connector so will not work).

Compatible power supply: Delta DPS-825AB B 800W Power Supply 405351-003

What I like about this power supply is that it is incredibly quiet.

Non-compatbile power supply: Delta DPS1050CB 1050W HP P/N 440860-001 (SPARE) 442038-001

CPU Fans & Heatsink are Proprietary (even the power connectors are)

You have to buy the correct HP part# for these but it is worth the money, after 117 days of uptime both heatsinks are luke warm to the touch (no need for liquid cooling).

CPUs

2 x AMD Opteron 2419EE (45 Watts and 6-cores each clocked at 1.8ghz)

RAM
8 x 4GB PC2-5300P ECC Registered RAM Qimonda

It is way too much power for me

As you can see even with a load of nearly 3.0 most cores sit idle and at 800mhz to conserve energy and lower heat, showing that I have way more CPU power and cores than I really need.

cat /proc/cpuinfo|grep MHz

cpu MHz        : 800.000
cpu MHz        : 1200.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 1000.000
cpu MHz        : 800.000
cpu MHz        : 1800.000
cpu MHz        : 800.000
cpu MHz        : 800.000

The Green Computing Effect

Because of this build I was able to retire 2 servers and combine them into one.  It is an ideal setup having so many SATA ports that I am able to have separate RAID arrays for different functions so IO does not become a factor.

I have a RAID10 array for my main OS and /home, a second array for media and a third for Virtual Servers.

I’ve saved a lot of money, power and also don’t have the hassle of maintaining more systems than I need, all in a rock solid build with more CPU power than I’ll need.

People are always surprised when I tell them what I am using and usually they have spent a lot more on a computer they don’t need and have a CPU that uses far more power (eg. 150+W CPU).

This is a great way to go green, save power and also consolidate unnecessary systems and make life easier so it’s been a win-win.

Leave a Reply

Your email address will not be published. Required fields are marked *