How To Make Your Office IT/Computer Hardware More Green

As part of doing my part for the environment I consolidated a lot of other server/computer hardware in my office into a low-power, quiet and cool running Dedicated AMD Opteron Desktop Workstation Server from scratch.  It has kept my office cooler and quieter, all while saving on power and more importantly the environment.  I should have added that I also reduced the number of hard disks from several if not dozens in my office, to just 6 disks (all of them larger I believe 4-8TB each).

But I wanted to take it a step further and I admit I was also motivated each morning by the unfriendly smells of burning PCB no matter what I did.  It’s an exercise in efficiency, savings, environment and your own health and sanity.

In my office I have a gigabit 24-port rack mount switch and 42U server rack where I store parts and other items for testing and development.  Believe it or not but this switch seems to have made an incredible amount of heat and even worse, the burning PCB smell which can’t be healthy and it still baffles me because its fan is working just fine and the unit doesn’t get that hot.

This is where the waste part came in, the thing is that under my Desk I have a small gigabit switch for all of my other devices such as VOIP, phone, printer, laptop, etc… and the 24-port switch only has 4 or 5 ports active.  I’ve kept the 24-port on the rack and ready to plug in and I just switched in a humble but efficient 5-port gigabit switch which has reduced heat and the bad PCB smell in the office.

One thing I admit that I have done (or rather haven’t) is enabled any kind of sleep mode for my Desktop workstation and this is because it is nearly always active and I like to remotely connect to it at odd times of the day.  But still this current Opteron workstation runs cooler than my previous labyrinth of servers and workstations that were active so I can actually hear again.  By consolidating most services into a single unit with virtual servers you can often eliminate the majority of power usage which primarily comes from hot and power hungry CPUs.  This is one reason why I haven’t upgraded to newer Opteron architecture, yes you get more cores per CPU but the power usage ends up being more than what I am into now and is no more efficient and far exceeds my current needs.

Green Computing with a Server Based Desktop Workstation

A lot of people whether friends or family wonder what kind of computer I have and usually say something along the lines of “Areeb must have a supercomputer as a PC”.  Most people are surprised when it couldn’t be further from the truth, and even more, I have no need for a more powerful computer.

A few months ago I decided to upgrade from a self-built AMD Phenom Quad Core CPU with 8GB of RAM and RAID 1 x 1TB hard drives, not because I needed the CPU power, but because I wanted more RAM and grew tired of maintaining so many physical computers in my personal space.

Prior to this I used to have a separate server for all of my testing, VPS and another for filebackups and media.  But it really was quite the waste to use so much extra power when those other systems sat mainly idle.

My solution was to make a hybrid, Desktop workstation on my own (I always prefer to build my own systems).  I must admit I didn’t have an exact plan and it was more of a work in progress when I first started.

My Home Made Workstation

I have used servers based on the AMD Opteron 2400 series and loved them because of their low wattage and high cores.  Almost any of them would give me more power than I had before (which I didn’t need).

I settled on a brand new Coolermaster Case which supported dual power supplies, and more importantly EATX server motherboards.

The Coolermaster case is fantastic with so many large fans. I was getting a loud and annoying errrerr whirring noise from the CPU fan at the rear even with an exhaust fan there due to heat. By plugging in the included large top vents this fixed it. I suspect the rear of the case with the cards being there is one of the hotter areas in a PC case (heat coming from GPU and also LSI 9200). I was surprised that this was the case even with a 120MM rear exhaust fan.  The noise does still happen sometimes, to get rid of it permanently I suspect I’ll need to actively cool and move air from those 2 cards.

AMD Opteron Tyan/HP Server Based Motherboard:

I’ve always been a fan of AMD so I couldn’t resist when I came across this model.

HP XW9400 but is really a rebranded Tyan S2915E (I love Tyan products because I find they are incredibly stable and long-lasting, no Asus Desktop product can compare in my opinion).

What’s to love about the Tyan S2915E/XW9400 Motherboard?

 

AreebXW9400build

  • Dual CPU Sockets (I installed dual 6-core AMD 2419EE to keep the power low, at just 45W each for a total of 12 cores)
  • 8 RAM sockets (4 per CPU with support for up to 64GB DDR2 ECC RAM)
  • SAS/SATA Controller (LSI 1068E) with 8 ports
  • SATA Controller (MCP55) with 6 ports.
  • Dual NVIDIA 1gbit NICs
  • Dual PCI-E x16 Graphics Slots
  • PCI-X (2) PCI-X 64-bit 133/100MHz slots
    PCI (1) PCI 32-bit slot
  • Onboard Audio

Can be flashed with Tyan firmware and in case of a bad flash it has a standard ROM chip that can be replaced and/or flashed even from Linux (using Flashrom).

The Build

Since I bought a brand new HP XW9400 motherboard there were some challenges.  First of all it came with standoffs meant for the HP XW9400 case but are completely useless for a standard EATX case.  To make it worse they are TORX screws with a security bit in the middle.  Fortunately it is fairly easy to break the security bits off using a flat head screw driver.

Power Supply is not a standard ATX, I bought one used from the XW8400 (interestingly enough the ones branded as XW9400 are missing the memory power connector so will not work).

Compatible power supply: Delta DPS-825AB B 800W Power Supply 405351-003

What I like about this power supply is that it is incredibly quiet.

Non-compatbile power supply: Delta DPS1050CB 1050W HP P/N 440860-001 (SPARE) 442038-001

I thought I would update the info for the power supply. Some sites imply you must use an HP power supply or you may blow your motherboard but this is unnecessary and untrue. The HP power supply cannot be bolted unto a standard ATX computer case because they are not the same dimensions. This motherboard has 3 power connectors a P4 4pin ATX12V to power the RAM, an EPS12V 8pin to power the CPUs and standard ATX 24 pin.

Many normal ATX power supplies offer the 8 pin EPS12V connector and the standard ATX 24PIN connector is compatible. Most do not offer the ATX12V P4 4pin.

This is not a problem as there are adapters which easily convert Molex LP4 connectors into EPS12V and P4 ATX 12V so no need to limit your choices to EPS12V power supplies (though it is nice to have it builtin).

I am currently using a Logisys 650W 80Plus Gold power supply which includes an EPS12V and I am using a Startech MOLEX to P4/ATX12V 4-pin adapter for the memory connector.

CPU Fans & Heatsink are Proprietary (even the power connectors are)

You have to buy the correct HP part# for these but it is worth the money, after 117 days of uptime both heatsinks are luke warm to the touch (no need for liquid cooling).

CPUs

2 x AMD Opteron 2419EE (45 Watts and 6-cores each clocked at 1.8ghz)

RAM
8 x 4GB PC2-5300P ECC Registered RAM Qimonda

It is way too much power for me

As you can see even with a load of nearly 3.0 most cores sit idle and at 800mhz to conserve energy and lower heat, showing that I have way more CPU power and cores than I really need.

cat /proc/cpuinfo|grep MHz

cpu MHz        : 800.000
cpu MHz        : 1200.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 800.000
cpu MHz        : 1000.000
cpu MHz        : 800.000
cpu MHz        : 1800.000
cpu MHz        : 800.000
cpu MHz        : 800.000

The Green Computing Effect

Because of this build I was able to retire 2 servers and combine them into one.  It is an ideal setup having so many SATA ports that I am able to have separate RAID arrays for different functions so IO does not become a factor.

I have a RAID10 array for my main OS and /home, a second array for media and a third for Virtual Servers.

I’ve saved a lot of money, power and also don’t have the hassle of maintaining more systems than I need, all in a rock solid build with more CPU power than I’ll need.

People are always surprised when I tell them what I am using and usually they have spent a lot more on a computer they don’t need and have a CPU that uses far more power (eg. 150+W CPU).

This is a great way to go green, save power and also consolidate unnecessary systems and make life easier so it’s been a win-win.

Conclusion/Update

I am really happy with this setup the PC runs cool and is super quiet. I recently upgraded to the maximum amount of RAM 64GB (8x8GB). Another addition has been an LSI 9200 SAS/SATA card which has 2 SFF8088 connectors that create a total of 8 ports. The main reason is to support 3TB+ drives including my 8TB Seagates for backup.